LATERAL LINE NEUROMASTS DETECT COMPLEX WATER MOTIONS
نویسندگان
چکیده
منابع مشابه
Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
Hydrodynamic imaging using the lateral line plays a critical role in fish behavior. To engineer such a biologically inspired sensing system, we developed an artificial lateral line using MEMS (microelectromechanical system) technology and explored its localization capability. Arrays of biomimetic neuromasts constituted an artificial lateral line wrapped around a cylinder. A beamforming algorith...
متن کاملMicro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts
Fish sense water motions with their lateral line. The lateral line is a sensory system that contains up to several thousand mechanoreceptors, called neuromasts. Neuromasts occur freestanding on the skin and in subepidermal canals. We developed arrays of flow sensors based on lateral line canal neuromasts using a biomimetic approach. Each flow sensor was equipped with a PDMS (polydimethylsiloxan...
متن کاملSupernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia.
The lateral line and its associated sensory nerves develop from cephalic epithelial thickenings called neurogenic placodes. In the zebrafish, the transcription factor neurogenin 1 is essential for the generation of the sensory ganglion from the placode, but is dispensable for the migration of the primordium and the initial development of neuromasts. We find that inactivation of the gene encodin...
متن کاملInhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts
The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal...
متن کاملNeural responses of goldfish lateral line afferents to vortex motions.
The lateral line system of fish is sensitive to weak water motions. We recorded from posterior lateral line nerve afferents while stimulating goldfish, Carassius auratus, with unidirectional water flow and with a vortex ring. Posterior lateral line afferents of goldfish were either flow sensitive or flow insensitive. Both types of afferents responded to a vortex ring that passed the fish latera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Biology
سال: 2006
ISSN: 1477-9145,0022-0949
DOI: 10.1242/jeb.02039